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1Department of Mathematics, Faculty of Sciences, Bilkent University, Ankara 06800, Turkey

2Department of Physics, Faculty of Sciences, Bilkent University, Ankara 06800, Turkey

3Department of Aeronautical Engineering, University of Turkish Aeronautical Association, Ankara 06790, Turkey

(Received July 30, 2018; revised manuscript received October 2, 2018)

Abstract General quantum gravity arguments predict that Lorentz symmetry might not hold exactly in nature. This
has motivated much interest in Lorentz breaking gravity theories recently. Among such models are vector-tensor theories
with preferred direction established at every point of spacetime by a fixed-norm vector field. The dynamical vector
field defined in this way is referred to as the “aether”. In this paper, we put forward the idea of a null aether field and
introduce, for the first time, the Null Aether Theory (NAT) — a vector-tensor theory. We first study the Newtonian limit
of this theory and then construct exact spherically symmetric black hole solutions in the theory in four dimensions, which
contain Vaidya-type non-static solutions and static Schwarzschild-(A)dS type solutions, Reissner-Nordström-(A)dS type
solutions and solutions of conformal gravity as special cases. Afterwards, we study the cosmological solutions in NAT:
We find some exact solutions with perfect fluid distribution for spatially flat FLRW metric and null aether propagating
along the x direction. We observe that there are solutions in which the universe has big-bang singularity and null field
diminishes asymptotically. We also study exact gravitational wave solutions — AdS-plane waves and pp-waves — in
this theory in any dimension D ≥ 3. Assuming the Kerr-Schild-Kundt class of metrics for such solutions, we show that
the full field equations of the theory are reduced to two, in general coupled, differential equations when the background
metric assumes the maximally symmetric form. The main conclusion of these computations is that the spin-0 aether field
acquires a “mass” determined by the cosmological constant of the background spacetime and the Lagrange multiplier
given in the theory.
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1 Introduction
Lorentz violating theories of gravity have attracted

much attention recently. This is mainly due to the fact
that some quantum gravity theories, such as string the-
ory and loop quantum gravity, predict that the spacetime
structure at very high energies — typically at the Planck
scale — may not be smooth and continuous, as assumed
by relativity. This means that the rules of relativity do
not apply and Lorentz symmetry must break down at or
below the Planck distance (see e.g., Ref. [1]).

The simplest way to study Lorentz violation in the con-
text of gravity is to assume that there is a vector field with
fixed norm coupling to gravity at each point of spacetime.
In other words, the spacetime is locally endowed with a
metric tensor and a dynamical vector field with constant
norm. The vector field defined in this way is referred to
as the “aether” because it establishes a preferred direction
at each point in spacetime and thereby explicitly breaks
local Lorentz symmetry. The existence of such a vector
field would affect the propagation of particles — such as
electrons and photons — through spacetime, which man-

ifests itself at very high energies and can be observed by
studying the spectrum of high energy cosmic rays. For
example, the interactions of these particles with the field
would restrict the electron’s maximum speed or cause po-
larized photons to rotate as they travel through space over
long distances. Any observational evidence in these direc-
tions would be a direct indication of Lorentz violation,
and therefore new physics, at or beyond the Planck scale.

So vector-tensor theories of gravity are of physical
importance today because they may shed some light
on the internal structure of quantum gravity theories.
One such theory is Einstein-Aether theory[2−3] in which
the aether field is assumed to be timelike and there-
fore breaks the boost sector of the Lorentz symmetry.
This theory has been investigated over the years from
various respects.[4−22] There also appeared some related
works,[23−26] which discuss the possibility of a spacelike
aether field breaking the rotational invariance of space.
The internal structure and dynamics of such theories are
still under examination; for example, the stability problem
of the aether field has been considered in Refs. [27–28].§
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Of course, to gain more understanding in these respects,
one also needs explicit analytic solutions to the fairly com-
plicated equations of motion that these theories possess.

In this paper, we propose yet another possibility,
namely, the possibility of a null aether field, which dynam-
ically couples to the metric tensor of spacetime. From now
on, we shall refer to the theory constructed in this way as
Null Aether Theory (NAT). This construction enables us
to naturally introduce a scalar degree of freedom, i.e. the
spin-0 part of the aether field, which is a scalar field that
has a mass in general. By using this freedom, we show
that it is possible to construct exact black hole solutions
and nonlinear wave solutions in the theory.¶ Indeed, as-
suming the null aether vector field (vµ) is parallel to the
one null leg (lµ) of the viel-bein at each spacetime point,
i.e. vµ = ϕ(x)lµ, where ϕ(x) is the spin-0 aether field, we
first discuss the Newtonian limit of NAT and then proceed
to construct exact spherically symmetric black hole solu-
tions to the full nonlinear theory in four dimensions. In
the Newtonian limit, we considered three different forms
of the aether field: (a) vµ = aµ + kµ where aµ is a con-
stant vector representing the background aether field and
kµ is the perturbed aether field. (b) ϕ = ϕ0 + ϕ1 and
lµ = δ0µ + (1−Φ−Ψ)(xi/r)δiµ where ϕ0 is a nonzero con-
stant and ϕ1 is the perturbed scalar aether field. (c) The
case where ϕ0 = 0.

Among the black hole solutions, there are Vaidya-type
nonstationary solutions, which do not need the existence
of any extra matter field: the null aether field present
in the very foundation of the theory behaves, in a sense,
as a null matter to produce such solutions. For special
values of the parameters of the theory, there are also sta-
tionary Schwarzschild-(A)dS type solutions that exist even
when there is no explicit cosmological constant in the the-
ory, Reissner-Nordström-(A)dS type solutions with some
“charge” sourced by the aether, and solutions of conformal
gravity that contain a term growing linearly with radial
distance and so associated with the flatness of the galaxy
rotation curves. Our exact solutions perfectly match the
solutions in the Newtonian limit when the aether field is
on the order of the Newtonian potential.

We investigated the cosmological solutions of NAT.
Taking the matter distribution as the perfect fluid en-
ergy momentum tensor, with cosmological constant, the
metric as the spatially flat (k = 0) Friedmann-Lemâıtre-
Robertson-Walker (FLRW) metric and the null aether
propagating along the x-axis, we find some exact solu-
tions where the equation of state is of polytropic type. If
the parameters of the theory satisfy some special inequal-
ities, then acceleration of the expansion of the universe
is possible. This is also supported by some special exact
solutions of the field equations. There are two different
types of solutions: power law and exponential. In the

case of the power law type, there are four different solu-
tions in all of which the pressure and the matter density
blow up at t = 0. In the other exponential type solutions
case, the metric is of the de Sitter type and there are three
different solutions. In all these cases the pressure and the
matter density are constants.

On the other hand, the same construction, vµ =
ϕ(x)lµ, also permits us to obtain exact solutions describ-
ing gravitational waves in NAT. In searching for such solu-
tions, the Kerr-Schild-Kundt (KSK) class of metrics[33−38]

was shown to be a valuable tool to start with: Indeed,
recently, it has been proved that these metrics are uni-
versal in the sense that they constitute solutions to the
field equations of any theory constructed by the contrac-
tions of the curvature tensor and its covariant derivatives
at any order.[38] In starting this work, one of our moti-
vations was to examine whether such universal metrics
are solutions to vector-tensor theories of gravity as well.
Later on, we perceived that this is only possible when
the vector field in the theory is null and aligned with the
propagation direction of the waves. Taking the metric
in the KSK class with maximally symmetric backgrounds
and assuming further lµ∂µϕ = 0, we show that the AdS-
plane waves and pp-waves form a special class of exact
solutions to NAT. The whole set of field equations of the
theory are reduced to two coupled differential equations,
in general, one for a scalar function related to the pro-
file function of the wave and one for the “massive” spin-0
aether field ϕ(x). When the background spacetime is AdS,
it is possible to solve these coupled differential equations
exactly in three dimensions and explicitly construct plane
waves propagating in the AdS spacetime. Such construc-
tions are possible also in dimensions higher than three but
with the simplifying assumption that the profile function
describing the AdS-plane wave does not depend on the
transverse D-3 coordinates. The main conclusion of these
computations is that the mass corresponding to the spin-0
aether field acquires an upper bound (the Breitenlohner-
Freedman bound[39]) determined by the value of the cos-
mological constant of the background spacetime. In the
case of pp-waves, where the background is flat, the scalar
field equations decouple and form one Laplace equation
for a scalar function related to the profile function of the
wave and one massive Klein-Gordon equation for the spin-
0 aether field in (D-2)-dimensional Euclidean flat space.
Because of this decoupling, plane wave solutions, which
are the subset of pp-waves, can always be constructed in
NAT.

The paper is structured as follows. In Sec. 2, we intro-
duce NAT and present the field equations. In Sec. 3, we
study the Newtonian limit of the theory to see the effect
of the null vector field on the solar system observations.
In Sec. 4, we construct exact spherically symmetric black

¶In the context of Einstein-Aether theory, black hole solutions were considered in Refs. [4–13] and plane wave solutions were studied in

Refs. [30–32].
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hole solutions in their full generality in four dimensions. In
Sec. 5, we study the FLRW cosmology with spatially flat
metric and null aether propagating along the x direction.
We find mainly two different exact solutions in the power
and exponential forms. We also investigate the possible
choices of the parameters of the theory where the expan-
sion of the universe is accelerating. In Sec. 6, we study the
nonlinear wave solutions of NAT propagating in nonflat
backgrounds, which are assumed to be maximally sym-
metric, by taking the metric in the KSK class. In Sec. 7,
we specifically consider AdS-plane waves describing plane
waves moving in the AdS spacetime in D ≥ 3 dimensions.
In Sec. 8, we briefly describe the pp-wave spacetimes and
show that they provide exact solutions to NAT. We also
discuss the availability of the subclass plane waves under
certain conditions. Finally, in Sec. 9, we summarize our
results.

We shall use the metric signature (−,+,+,+, . . .)
throughout the paper.

2 Null Aether Theory
The theory we shall consider is defined in D dimen-

sions and described by, in the absence of matter fields,
the action

I =
1

16πG

∫
dD x

√
−g [R− 2Λ−Kµν

αβ∇µv
α∇νv

β

+λ(vµv
µ + ε)] , (1)

where

Kµν
αβ = c1g

µνgαβ + c2δ
µ
αδ

ν
β + c3δ

µ
βδ

ν
α − c4v

µvνgαβ . (2)

Here Λ is the cosmological constant and vµ is the so-called
aether field, which dynamically couples to the metric ten-
sor gµν and has the fixed-norm constraint

vµv
µ = −ε , (ε = 0,±1) , (3)

which is introduced into the theory by the Lagrange mul-
tiplier λ in Eq. (1). Accordingly, the aether field is a
timelike (spacelike) vector field when ε = +1 (ε = −1),
and it is a null vector field when ε = 0.∥ The constant
coefficients c1, c2, c3 and c4 appearing in Eq. (2) are the
dimensionless parameters of the theory.∗∗

The equations of motion can be obtained by varying
the action (1) with respect to the independent variables:
Variation with respect to λ produces the constraint equa-
tion (3) and variation with respect to gµν and vµ produces
the respective, dynamical field equations

Gµν + Λgµν = ∇α[J
α

(µ vν) − J(µαvν) + J(µν)v
α]

+ c1(∇µvα∇νv
α −∇αvµ∇αvν)

+ c4v̇µv̇ν + λvµvν − 1

2
Lgµν , (4)

c4v̇
α∇µvα +∇αJ

α
µ + λvµ = 0 , (5)

where v̇µ ≡ vα∇αv
µ and

Jµ
α ≡ Kµν

αβ∇νv
β , (6)

L ≡ Jµ
α∇µv

α . (7)

In writing Eq. (4), we made use of the constraint (3). From
now on, we will assume that the aether field vµ is null (i.e.,
ε = 0) and refer to the above theory as Null Aether The-
ory, which we have dubbed NAT. This fact enables us to
obtain ⟨ from the aether equation (5) by contracting it by
the vector uµ = δµ0 ; that is,

λ = − 1

uνvν
[c4u

µv̇α∇µvα + uµ∇αJ
α

µ] . (8)

Here we assume that uνvν ̸= 0 to exclude the trivial zero
vector; i.e., vµ ̸= 0. It is obvious that flat Minkowski
metric (ηµν) and a constant null vector (vµ = const.), to-
gether with λ = 0, constitute a solution to NAT. The
trivial case where vµ = 0 and Ricci flat metrics constitute
another solution of NAT. As an example, at each point
of a 4-dimensional spacetime it is possible to define a null
tetrad eaµ = (lµ, nµ,mµ, m̄µ) where lµ and nµ are real null
vectors with lµn

µ = −1, and mµ is a complex null vector
orthogonal to lµ and nµ. The spacetime metric can then
be expressed as

gµν = −lµnν − lνnµ +mµm̄ν +mνm̄µ . (9)

This form of the metric is invariant under the local
SL(2, C) transformation. For asymptotically flat space-
times, the metric gµν is assumed to reduce asymptotically
to the Minkowski metric ηµν ,

ηµν = −l0µn
0
ν − l0νn

0
µ +m0

µm̄
0
ν +m0

νm̄
0
µ , (10)

where (l0µ, n
0
µ,m

0
µ, m̄

0
µ) is the null tetrad of the flat

Minkowski spacetime and is the asymptotic limit of the
null tetrad eaµ = (lµ, nµ,mµ, m̄µ). Our first assumption
in this work is that the null aether vµ is proportional to
the null vector lµ; i.e., vµ = ϕ(x)lµ, where ϕ(x) is a scalar
function. In Petrov-Pirani-Penrose classification of space-
time geometries, the null vectors lµ and nµ play essential
roles. In special types, such as type-D and type-N, the
vector lµ is the principal null direction of the Weyl ten-
sor. Hence, with our assumption, the null aether vector
vµ gains a geometrical meaning. Physical implications of
the aether field vµ comes from the scalar field ϕ which car-
ries a nonzero charge. Certainly the zero aether, ϕ = 0,
or the trivial solution satisfies field equations (4) and (5).
To distinguish the nontrivial solution from the trivial one,
in addition to the field equations (4) and (5), we impose
certain nontrivial initial and boundary conditions for ϕ.
This is an important point in initial and boundary value
problems in mathematics. In any initial and boundary
value problem, when the partial differential equation is
homogenous, such as the massless Klein-Gordon equation,
the trivial solution is excluded by either the boundary or
initial conditions. Trivial solution exists only when both
boundary and initial values are zero. Therefore, our sec-
ond assumption in this work is that in stationary prob-
lems the scalar field ϕ carries a nonzero scalar charge and

∥The case with ε = +1 is associated with Einstein-Aether theory.[2−3]

∗∗In Einstein-Aether theory, these parameters are constrained by some theoretical and observational arguments.[2−3,16,32,40−46]
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in non-stationary problems it satisfies a non-trivial initial

condition.

In the case of black hole solutions and Newtonian ap-

proximation, the vector field is taken as vµ = ϕ(x)lµ where

lµ asymptotically approaches a constant vector and ϕ(x)

behaves like a scalar field carrying some null aether charge.

In the case of the wave solutions, ϕ(x) becomes a massive

scalar field.

Null Aether Theory, to our knowledge, is introduced

for the first time in this paper. There are some number

of open problems to be attacked such as Newtonian limit,

black holes, exact solutions, stability, etc. In this work, we

investigate the Newtonian limit, the spherically symmet-

ric black hole solutions (in D = 4), cosmological solutions,

and the AdS wave and pp-wave solutions of NAT. In all

these cases, we assume that vµ = ϕ(x)lµ, where lµ is a

null leg of the viel-bein at each spacetime point and ϕ(x)

is a scalar field defined as the spin-0 aether field that has a

mass in general. The covariant derivative of the null vec-

tor lµ can always be decomposed in terms of the optical

scalars: expansion, twist, and shear.[47]

3 Newtonian Limit of Null Aether Theory

Now we shall examine the Newtonian limit of NAT

to see whether there are any contributions to the Poisson

equation coming from the null aether field. For this pur-

pose, as usual, we shall assume that the gravitational field

is weak and static and produced by a nonrelativistic mat-

ter field. Also, we know that the cosmological constant —

playing a significant role in cosmology — is totally negli-

gible in this context.

Let us take the metric in the Newtonian limit as

ds2 = −[1+2Φ(x⃗)]dt2+[1−2Ψ(x⃗)](dx2+dy2+dz2) , (11)

where xµ = (t, x, y, z). We assume that the matter energy-

momentum distribution takes the form

Tmatter
µν = (ρm + pm)uµuν + pmgµν + tµν , (12)

where uµ =
√
1 + 2Φ δ0µ, ρm and pm are the mass density

and pressure of matter, and tµν is the stress tensor with

uµtµν = 0. We obtain the following cases.

Case 1 Let the null vector be

vµ = aµ + kµ , (13)

where aµ = (a0, a1, a2, a3) is a constant null vector rep-

resenting the background aether and kµ = (k0, k1, k2, k3)

represents the perturbed null aether. Nullity of the aether

field vµ implies

a20 = a⃗ · a⃗ , (14)

k0 =
1

a0
[⃗a · k⃗ + a20 (Ψ + Φ)] , (15)

at the perturbation order. Since the metric is symmetric

under rotations, we can take, without loosing any gener-

ality, a1 = a2 = 0 and for simplicity we will assume that

k1 = k2 = 0. Then we obtain Ψ = Φ, c3 = −c1, c2 = c1,

and

k3 = −2a33c4
c1

Φ , (16)

λ = 2 (c4a
2
3 − c1)

[
∇2Φ− a23c4

c1
Φ,zz

]
. (17)

It turns out that the gravitational potential Φ satisfies the
equation

∇2 Φ =
4πG

1− c1 a23
ρm = 4πG∗ρm , (18)

where

G∗ =
G

1− c1 a23
,

which implies that Newton’s gravitation constant G is
scaled as in Refs. [16,42]. The constraint c3 + c1 = 0
can be removed by taking the stress part tµν into account
in the energy momentum tensor, then there remains only
the constraint c2 = c1.

Case 2 In this spacetime, a null vector can also be de-
fined, up to a multiplicative function of x⃗, as

lµ = δ0µ + (1− Φ−Ψ)
xi

r
δiµ , (19)

where r =
√

x2 + y2 + z2 with i = 1, 2, 3. Now we write
the null aether field as vµ = ϕ(x⃗)lµ (since we are studying
with a null vector, we always have this freedom) and as-
sume that ϕ(x⃗) = ϕ0+ϕ1(x⃗) where ϕ0 is an arbitrary con-
stant not equal to zero and ϕ1 is some arbitrary function
at the same order as Φ and/or Ψ. Next, in the Eistein-
Aether equations (4) and (5), we consider only the zeroth
and first order (linear) terms in ϕ, Φ, and Ψ. The zeroth
order aether scalar field is different from zero, ϕ0 ̸= 0. In
this case the zeroth order field equations give c1 + c3 = 0
and c2 = 0, and consistency conditions in the linear equa-
tions give c4 = 0 and Ψ = Φ. Then we get ϕ1 = 2ϕ0Φ
and

∇2Φ =
4πG

1− c1ϕ2
0

ρm = 4πG∗ρm , (20)

which implies that

G∗ =
G

1− c1ϕ2
0

.

This is a very restricted aether theory because there exist
only one independent parameter c1 left in the theory.

Case 3 The zeroth order scalar aether field in case 2 is
zero, ϕ0 = 0. This means that ϕ(x⃗) = ϕ1(x⃗) is at the same
order as Φ and/or Ψ. In the Eistein-Aether equations (4)
and (5), we consider only the linear terms in ϕ, Φ, and
Ψ. Then the zeroth component of the aether equation (5)
gives, at the linear order,

c1∇2ϕ+ λϕ = 0 , (21)

where ∇2 ≡ ∂i∂i, and the i-th component gives, at the
linear order,

(c2+c3)r
2xj∂j∂iϕ−(2c1+c2+c3)x

ixj∂jϕ+[2c1+3(c2+c3)]

×r2∂iϕ− 2(c1 + c2 + c3)x
iϕ = 0 , (22)
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after eliminating λ using Eq. (21). Since the aether con-
tribution to the equation (4) is zero at the linear order,
the only contribution comes from the nonrelativistic mat-
ter for which we have (12). Here we are assuming that the
matter fields do not couple to the aether field at the linear
order. Therefore, the only nonzero components of Eq. (4)
are the 00 and the ij component (the 0i component is sat-
isfied identically). Taking the trace of the ij component
produces

∇2(Φ−Ψ) = 0 , (23)

which enforces
Φ = Ψ , (24)

for the spacetime to be asymptotically flat. Using this
fact, we can write, from the 00 component of Eq. (4),

∇2Φ = 4πGρm . (25)

Thus we see that the Poisson equation is unaffected by
the null aether field at the linear order in G.

The Poisson equation (25) determines the Newtonian
potential. To see the effect of the Newtonian potential on
a test particle, one should consider the geodesic equation
in the Newtonian limit in which the particle is assumed
to be moving nonrelativistically (i.e., v ≪ c) in a static
(i.e., ∂tgµν = 0) and weak (i.e., gµν = ηµν + hµν with
|hµν | ≪ 1) gravitational field. In fact, by taking the met-
ric in the form (11), one can easily show that the geodesic
equation reduces to the Newtonian equation of motion
d2xi/dt2 = −∂iΦ for a nonrelativistic particle.

Outside of a spherically symmetric mass distribution,
the Poisson equation (25) reduces to the Laplace equation
which gives

Φ(r) = −GM

r
. (26)

On the other hand, for spherical symmetry, the condition
(22) can be solved and yields

ϕ(r) = a1r
α1 + a2r

α2 , (27)

where a1 and a2 are arbitrary constants and

α1,2 = −1

2

[
1±

√
9 + 8

c1
c2 + c3

]
. (28)

This solution immediately puts the following condition on
the parameters of the theory

c1
c2 + c3

≥ −9

8
. (29)

Specifically, when c1 = −9(c2 + c3)/8, we have

ϕ(r) =
a1 + a2√

r
, (30)

when c1 = 0, we have

ϕ(r) =
a1
r2

+ a2r , (31)

or when c1 = −(c2 + c3), we have

ϕ(r) =
a1
r

+ a2 . (32)

In this last case, asymptotically, letting a2 = 0,
limr→∞[rϕ(r)] = a1 = GQ, where Q is the NAT charge.

4 Black Hole Solutions in Null Aether Theory

In this section, we shall construct spherically symmet-
ric black hole solutions to NAT inD = 4. Let us start with
the generic spherically symmetric metric in the following
form with xµ = (u, r, θ, ϑ):

ds2 = −
(
1− Λ

3
r2
)
u2 + 2dudr + r2dθ2 + r2 sin2 θdϑ2

+2f(u, r)du2 , (33)

where Λ is the cosmological constant. For f(u, r) = 0, this
becomes the metric of the usual (A)dS spacetime. Since
the aether field is null, we take it to be vµ = ϕ(u, r)lµ with
lµ = δuµ being the null vector of the geometry.

With the metric ansatz (33), from the u component of
the aether equation (5), we obtain

λ = − 1

3r2ϕ

{
3(c1 + c3)

[
Λr2 + (r2f ′)′

]
ϕ+ c1[(3− Λr2

− 6f)(r2ϕ′)′ + 6r(rϕ̇)′] + 3(c2 + c3)(r
2ϕ̇)′ − 3c4

× [2r2ϕ′2 + ϕ(r2ϕ′)′]ϕ
}
, (34)

and from the r component, we have

(c2 + c3)(r
2ϕ′′ + 2rϕ′)− 2(c1 + c2 + c3)ϕ = 0 , (35)

where the prime denotes differentiation with respect to r
and the dot denotes differentiation with respect to u. The
equation (35) can easily be solved and the generic solution
is

ϕ(u, r) = a1(u)r
α1 + a2(u)r

α2 , (36)

for some arbitrary functions a1(u) and a2(u), where

α1,2 = −1

2

[
1±

√
9 + 8

c1
c2 + c3

]
. (37)

When 9 + 8[c1/(c2 + c3)] > 0 and a2 = 0, then ϕ = a1/r
α

where α = (1/2)[1+
√
9 + 8[c1/(c2 + c3)]]. Here a1 = GQ,

where Q is the NAT charge.
Note that when c1 = −9(c2+ c3)/8, the square root in

Eq. (37) vanishes and the roots coincide to give α1 = α2 =
−1/2. Inserting this solution into the Einstein equations
(4) yields, for the ur component,

(1 + 2α1)a1(u)
2b1r

2α1 + (1 + 2α2)a2(u)
2b2r

2α2

− (rf)′ = 0 , (38)

with the identifications

b1 ≡ −1

4
[2c2+(c2+c3)α1], b2 ≡ −1

4
[2c2+(c2+c3)α2] .(39)

Thus we obtain

f(u, r) =


a1(u)

2b1r
2α1 + a2(u)

2b2r
2α2 + µ̃(u)

r ,

for α1 ̸= −1
2 , α2 ̸= −1

2 ,

µ(u)
r , for α1 = α2 = −1

2 ,

(40)

where µ̃(u) and µ(u) are arbitrary functions. Notice that
the last case occurs only when c1 = −9(c2 + c3)/8. If
we plug Eq. (40) into the other components, we identi-
cally satisfy all the equations except for the uu component
which, together with λ from Eq. (34), produces

[2c2+(c2+c3)α1]ȧ1a2+[2c2+(c2+c3)α2]a1ȧ2+2 ˙̃µ = 0 , (41)
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for α1 ̸= −1/2 and α2 ̸= −1/2, and

(3c2 − c3)
˙

(a1 + a2)2 + 8µ̇ = 0 , (42)

for α1 = α2 = −1/2. The last case immediately leads to

µ(u) =
1

8
(c3 − 3c2)(a1 + a2)

2 +m, (43)

where m is the integration constant. Thus we see that

Vaidya-type solutions can be obtained in NAT without in-

troducing any extra matter fields, which is unlike the case

in general relativity. Observe also that when f(u, r) = 0,

we should obtain the (A)dS metric as a solution to NAT

(see Eq. (33)). Then it is obvious from Eq. (38) that this

is the case, for example, if α1 = α2 = −1/2 corresponding

to

ϕ(u, r) =

{ d√
r
, for c1 = − 9

8 (c2 + c3),

a(u)√
r
, for c1 = − 9

8 (c2 + c3), c3 = 3c2,
(44)

where d is an arbitrary constant and a(u) is an arbitrary

function.

Defining a new time coordinate t by the transformation

du = g(t, r)dt+
dr

1− (Λ/3)r2 − 2f(t, r)
, (45)

one can bring the metric (33) into the Schwarzschild co-
ordinates

ds2 = −
(
1− Λ

3
r2 − 2f

)
g2dt2 +

dr2

(1− (Λ/3)r2 − 2f)

+ r2dθ2 + r2 sin2 θdϑ2 , (46)

where the function g(t, r) should satisfy

∂g

∂r
= 2

(
1− Λ

3
r2 − 2f

)−2 ∂f

∂t
. (47)

When a1(u) and a2(u) are constants, since f = f(r) then,
the condition (47) says that g = g(t) and so it can be
absorbed into the time coordinate t, meaning that g(t, r)
can be set equal to unity in Eqs. (45) and (46). In this
case, the solution (46) will describe a spherically symmet-
ric stationary black hole spacetime. The horizons of this
solution should then be determined by solving the equa-
tion

0 = h(r) ≡ 1− Λ

3
r2 − 2f =

{
1− Λ

3 r
2 − 2

r (a
2
1b1r

−q + a22b2r
q)− 2m̃

r (for q ̸= 0),

1− Λ
3 r

2 − 2m
r (for q = 0),

(48)

where m̃ = const., m = const., and

q ≡
√

9 + 8
c1

c2 + c3
, b1 =

1

8
[c3 − 3c2 + (c2 + c3)q],

b2 =
1

8
[c3 − 3c2 − (c2 + c3)q] . (49)

When a2 = 0, we let a1 = GQ, and the first case (q ̸= 0)
in Eq. (48) becomes

h(r) = 1− Λ

3
r2 − 2G2Q2 b1

r1+q
− 2m̃

r
. (50)

This is a black hole solution with event horizons located
at the zeros of the function h(r) which depend also on
the constant Q. This clearly shows that the correspond-
ing black hole carries an NAT charge Q. The second case
(q = 0) in Eq. (48) is the usual Schwarzschild-(A)dS space-
time. At this point, it is important to note that when a1
and a2 are in the order of the Newton’s constant G, i.e.
a1 ∼ G and a2 ∼ G, since h(r) depends on the squares
of a1 and a2, we recover the Newtonian limit discussed in
Sec. 3 for Λ = 0, m̃ = GM and D = 4. For special values
of the parameters of the theory, the first case (q ̸= 0) of
Eq. (48) becomes a polynomial of r; for example,
• When c1 = 0 (q = 3), h(r) ≡ 1 − A/r4 − Br2 − 2m̃/r:
This is a Schwarzschild-(A)dS type solution if A = 0. So-
lutions involving terms like A/r4 can be found in, e.g.,
Refs. [9,48].
• When c1 = −(c2 + c3) (q = 1), h(r) ≡ 1−A− Λr2/3−
B/r2 − 2m̃/r: This is a Reissner-Nordström-(A)dS type
solution if A = 0.
• When c1 = −5(c2 + c3)/8 (q = 2), h(r) ≡ 1 − Λr2/3 −
A/r3−Br−2m̃/r: This solution with A = 0 has been ob-
tained by Mannheim and Kazanas[49] in conformal gravity

who also argue that the linear term Br can explain the

flatness of the galaxy rotation curves.

Here A and B are the appropriate combinations of the

constants appearing in Eq. (48). For such cases, the equa-

tion h(r) = 0 may have at least one real root correspond-

ing to the event horizon of the black hole. For generic

values of the parameters, however, the existence of the

real roots of h(r) = 0 depends on the signs and values of

the constants Λ, b1, b2, and m̃ in Eq. (48). When q is an

integer, the roots can be found by solving the polynomial

equation h(r) = 0, as in the examples given above. When

q is not an integer, finding the roots of h(r) is not so easy,

but when the signs of limr→0+ h(r) and limr→∞ h(r) are

opposite, we can say that there must be at least one real

root of this function. Since the signs of these limits de-

pends on the signs of the constants Λ, b1, b2, and m̃, we

have the following cases in which h(r) has at least one real

root:

• If 0 < q < 3, Λ < 0, b1 > 0 ⇒ limr→0+ h(r) <

0 and lim
r→∞

h(r) > 0 ,

• If 0 < q < 3, Λ > 0, b1 < 0 ⇒ limr→0+ h(r) >

0 and lim
r→∞

h(r) < 0 ,

• If q > 3, b1 > 0, b2 < 0 ⇒ limr→0+ h(r) <

0 and lim
r→∞

h(r) > 0 ,

• If q > 3, b1 < 0, b2 > 0 ⇒ limr→0+ h(r) >

0 and lim
r→∞

h(r) < 0 .

Of course, these are not the only possibilities, but we give

these examples to show the existence of black hole solu-

tions of NAT in the general case.
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5 Cosmological Solutions in Null Aether
Theory

The aim of this section is to construct cosmological so-

lutions to the NAT field equations (4) and (5). We expect

to see the gravitational effects of the null aether in the

context of cosmology. We will look for spatially flat cos-

mological solutions, especially the ones which have power

law and exponential behavior for the scale factor.

Taking the metric in the standard FLRW form and

studying in Cartesian coordinates for spatially flat mod-

els, we have

ds2 = −dt2 +R2(t)(dx2 + dy2 + dz2) . (51)

The homogeneity and isotropy of the space dictates that

the “matter” energy-momentum tensor is of a perfect

fluid; i.e.,

Tmatter
µν = (ρ̃m + p̃m)uµuν + p̃mgµν , (52)

where uµ = (1, 0, 0, 0) and we made the redefinitions

ρ̃m = ρm − Λ , p̃m = pm + Λ , (53)

for, respectively, the density and pressure of the fluid

which are functions only of t. Therefore, with the in-
clusion of the matter energy-momentum tensor (52), the
Einstein equation (4) take the form

Eµν ≡ Gµν − TNAT
µν − 8πGTmatter

µν = 0 , (54)

where TNAT
µν denotes the null aether contribution on the

right hand side of Eq. (4). Since first two terms in this
equation have zero covariant divergences by construction,
the energy conservation equation for the fluid turns out
as usual; i.e., from ∇νE

µν = 0, we have

˙̃ρm + 3
Ṙ

R
(ρ̃m + p̃m) = 0 , (55)

where the dot denotes differentiation with respect to t.
Now we shall take the aether field as

vµ = ϕ(t)

(
1,

1

R(t)
, 0, 0

)
, (56)

which is obviously null, i.e. vµv
µ = 0, with respect to the

metric (51). Then there are only two aether equations:
one coming from the time component of Eq. (5) and the
other coming from the x component. Solving the time
component for the lagrange multiplier field, we obtain

λ(t) = 3(c4ϕ
2 − c123)

( Ṙ
R

)2

+ 2c4ϕ̇
2 + (3c123 + 7c4ϕ

2)
ϕ̇

ϕ

Ṙ

R
+ (3c2 + c4ϕ

2)
R̈

R
+ (c123 + c4ϕ

2)
ϕ̈

ϕ
, (57)

where c123 ≡ c1 + c2 + c3, and inserting this into the x component, we obtain

ϕ

R
[(3c2 + c3)RR̈− (2c1 + 3c2 + c3)Ṙ

2] + (c2 + c3)(3Ṙϕ̇+Rϕ̈) = 0 . (58)

Also, eliminating λ from the Einstein equations (54) by using Eq. (57), we obtain

16πGρ̃ = [6 + (2c1 + 9c2 + 3c3)ϕ
2]
( Ṙ
R

)2

+ 2(3c2 + c3)ϕϕ̇
( Ṙ
R

)
+ (c2 + c3)ϕ̇

2 , (59)

16πGp̃ = [−2 + (6c1 + 3c2 + c3)ϕ
2]
( Ṙ
R

)2

− 2(9c2 + 7c3)ϕϕ̇
( Ṙ
R

)
− 4[1 + (3c2 + c3)ϕ

2]
( R̈
R

)
− (c2 + c3)(ϕ̇

2 + 4ϕϕ̈) , (60)

from Ett = 0 and Exx = 0, respectively, and

−c3R
2ϕ̇2 + ϕ2[(4c1 + 3c2 + c3)Ṙ

2 + (c1 − 3c2 − c3)RR̈]−Rϕ[(−2c1 + 3c2 + 6c3)Ṙϕ̇+ (c2 + 2c3)Rϕ̈] = 0 , (61)

from Exx − Eyy = 0 (or from Exx − Ezz = 0). The Etx = 0 equation is identically satisfied thanks to Eq. (58).
To get an idea how the null aether contributes to the acceleration of the expansion of the universe, we define

H(t) = Ṙ/R (the Hubble function) and h(t) = ϕ̇/ϕ. Then Eqs. (58) and (61) respectively become

(3c2 + c3)Ḣ − 2c1H
2 + 3(c2 + c3)Hh+ (c2 + c3)h

2 + (c2 + c3)ḣ = 0 , (62)

(c1 − 3c2 − c3)Ḣ + 5c1H
2 + (2c1 − 3c2 − 6c3)Hh− (c2 + 3c3)h

2 − (c2 + 2c3)ḣ = 0 . (63)

Eliminating ḣ between these equations, we obtain

Ḣ = − c1(3c2 + c3)

c1(c2 + c3) + c3(3c2 + c3)

[
H +

c2 + c3
3c2 + c3

h
]2

+
c2 + c3
3c2 + c3

h2 . (64)

It is now possible to make the sign of Ḣ positive by as-

suming that

0 <
c2 + c3
3c2 + c3

< −c3
c1

, (65)

which means that the universe’s expansion is accelerating.

In the following sub-sections we give exact solutions of

the above field equations in some special forms.

5.1 Power Law Solution

Let us assume the scale factor has the behavior

R(t) = R0t
ω , (66)

where R0 and ω are constants. Then the equation (58)

can easily be solved for ϕ to obtain

ϕ(t) = ϕ1t
σ1 + ϕ2t

σ2 , (67)

where ϕ1 and ϕ2 are arbitrary constants and

σ1,2 =
1

2
(1− 3ω ± β) ,

β ≡
√

1 + 2
3c2 − c3
c2 + c3

ω +
(
9 + 8

c1
c2 + c3

)
ω2 . (68)
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Now plugging Eqs. (66) and (67) into Eq. (61), one can

obtain the following condition on the parameters:

β
[
At1−3ω+β −B t1−3ω−β

]
= 0 , (69)

where

A ≡ (1 + 3ω − β) [(3c2 − c3)ω + (c2 + c3)(1 + β)]ϕ2
1 , (70)

B ≡ (1 + 3ω + β) [(3c2 − c3)ω + (c2 + c3)(1− β)]ϕ2
2 . (71)

The interesting cases are

(i) β = 0 ,

(ii) β = 1 + 3ω and ϕ2 = 0 ,

(iii) β = −(1 + 3ω) and ϕ1 = 0 ,

(iv) β = 1 +
3c2 − c3
c2 + c3

ω and ϕ1 = 0 ,

(v) β = −
(
1 +

3c2 − c3
c2 + c3

ω
)

and ϕ2 = 0 ,

Using the definition of β in Eq. (68), we can now put some

constraints on the parameters of the theory.

Case 1 (β = 0)

In this case, it turns out that

ω =

{ −b±
√
b2−a

a , for a ̸= 0 ,

− 1
2b , for a = 0 ,

(72)

where we define

a ≡ 9 + 8
c1

c2 + c3
, b ≡ 3c2 − c3

c2 + c3
, (73)

which must satisfy b2 − a > 0. Then we have

R(t) = R0t
ω, ϕ(t) = ϕ0t

(1−3ω)/2 , (74)

ρm + Λ =
3ω2

8πGt2
, (75)

pm − Λ =
ω(2− 3ω)

8πGt2
. (76)

Here ϕ0 is a new constant defined by ϕ0 ≡ ϕ1 + ϕ2. The

last two equations say that

ρm + pm =
2ω

8πGt2
⇒ pm = γρm +

2Λ

3ω
, (77)

where

γ =
2

3ω
− 1 . (78)

Thus, for dust (pm = 0) to be a solution, it is obvious that

ω =
2

3
, Λ = 0 . (79)

Case 2 and 3 (β = 1 + 3ω, ϕ2 = 0) and (β =

−(1 + 3ω), ϕ1 = 0)

In these two cases, we have

ω =
c3
c1

, R(t) = R0t
ω, ϕ(t) = ϕit, (80)

ρm + Λ =
3ω2

8πGt2
+

ϕ2
i

16πG
(1 + 3ω)[c2 + c3

+(3c2 + c3)ω], (81)

pm − Λ =
ω(2− 3ω)

8πGt2
− ϕ2

i

16πG
(1 + 3ω)[c2 + c3

+(3c2 + c3)ω], (82)

where the subscript i represents “1” for Case 2 and “2”
for Case 3. Adding Eqs. (81) and (82), we also have

ρm + pm =
2ω

8πGt2
⇒ p = γρm +

2δ

3ω
, (83)

where

γ =
2

3ω
−1, δ = Λ− ϕ2

i

16πG
(1+3ω)[c2+c3+(3c2+c3)ω].(84)

It is interesting to note that the null aether is linearly in-
creasing with time and, together with the parameters of
the theory, determines the cosmological constant in the
theory. For example, for dust (pm = 0) to be a solution,
it can be shown that

ω =
c3
c1

=
2

3
, Λ =

ϕ2
i

16πG
(9c2 + 5c3) . (85)

Since β > 0 by definition (see Eq. (68)), ω > −1/3 in Case
2 and ω < −1/3 in Case 3. So the dust solution (85) can
be realized only in Case 2.

Case 4 and 5
[
β = 1 + 3c2−c3

c2+c3
ω and ϕ1 = 0

]
,
[
β =

−
(
1 + 3c2−c3

c2+c3
ω
)
and ϕ2 = 0

]
In these cases, using the definition of β given in Eq. (68),
we immediately obtain

ω = arbitrary ̸= 0, c1 = −c3(3c2 + c3)

c2 + c3
. (86)

We should also have β > 0 by definition. Then we find

R(t) = R0t
ω, ϕ(t) = ϕit

−(3c2+c3)ω/(c2+c3) , (87)

ρm + Λ =
3ω2

8πGt2
, (88)

pm − Λ =
ω(2− 3ω)

8πGt2
. (89)

Here i represents “2” for Case 4 and “1” for Case 5. So
as in Case 1,

ρm + pm =
2ω

8πGt2
⇒ pm = γρm +

2Λ

3ω
, (90)

where

γ =
2

3ω
− 1 . (91)

In all the cases above, the Hubble function H = w/t and
hence Ḣ = −w/t2. Then w < 0 corresponds to the ac-
celeration of the expansion of the universe, and in all our
solutions above, there are indeed cases in which ω < 0.

5.2 Exponential Solution

Now assume that the scale factor has the exponential
behavior

R(t) = R0 e
ωt , (92)

where R0 and ω are constants. Following the same steps
performed in the power law case, we obtain

ϕ(t) = ϕ1 e
σ1ωt + ϕ2 e

σ2ωt , (93)

where ϕ1 and ϕ2 are new constants and

σ1,2 = −1

2
(3± β), β ≡

√
9 + 8

c1
c2 + c3

, (94)

and the condition

β
[
A e−βωt −B eβωt

]
= 0, (95)
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where

A ≡ (3 + β)[3c2 − c3 − (c2 + c3)β]ϕ
2
1 , (96)

B ≡ (3− β)[3c2 − c3 + (c2 + c3)β]ϕ
2
2 . (97)

Then the interesting cases are

(i) β = 0 ⇒ ϕ(t) = ϕ0 e
−3ωt/2 ,

(ii) β =
3c2 − c3
c2 + c3

, ϕ2 = 0 ⇒ ϕ(t) = ϕ2 e
−(3c2+c3)ωt/(c2+c3) ,

(iii) β = −
(
3c2 − c3
c2 + c3

)
ϕ1 = 0 ⇒

ϕ(t) = ϕ1 e
−(3c2+c3)ωt/(c2+c3),

where we defined ϕ0 ≡ ϕ1 + ϕ2. It should be noted again
that β > 0 by definition (See Eq. (94)). In all these three
cases, we find that

ρm + Λ =
3ω2

8πG

pm − Λ = − 3ω2

8πG

 ⇒ ρm + pm = 0, (98)

where ω is arbitrary. When ρm = pm = 0, this is the usual
de Sitter solution which, describes a radiation dominated
expanding universe.

6 Wave Solutions in Null Aether Theory:
Kerr-Schild-Kundt Class of Metrics
Now we shall construct exact wave solutions to NAT

by studying in generic D ≥ 3 dimensions. For this pur-
pose, we start with the general KSK metrics[33−38] of the
form

gµν = ḡµν + 2V lµlν , (99)

with the properties

lµl
µ = 0 , ∇µlν =

1

2
(lµξν + lνξµ) ,

lµξ
µ = 0 , lµ∂µV = 0 , (100)

where ξµ is an arbitrary vector field for the time being.
It should be noted that lµ is not a Killing vector. From
these relations it follows that

lµ∇µlν = 0 , lµ∇ν lµ = 0 , ∇µl
µ = 0 . (101)

In Eq. (99), ḡµν is the background metric assumed to be

maximally symmetric; i.e. its curvature tensor has the

form

R̄µανβ = K(ḡµν ḡαβ − ḡµβ ḡνα) , (102)

with

K =
R̄

D(D − 1)
= const . (103)

It is therefore either Minkowski, de Sitter (dS), or anti-

de Sitter (AdS) spacetime, depending on whether K = 0,

K > 0, or K < 0. All the properties in Eq. (100), together

with the inverse metric

gµν = ḡµν − 2V lµlν , (104)

imply that (see, e.g., Ref. [34])

Γµ
µν = Γ̄µ

µν , lµΓ
µ
αβ = lµΓ̄

µ
αβ , lαΓµ

αβ = lαΓ̄µ
αβ , (105)

ḡαβΓµ
αβ = ḡαβΓ̄µ

αβ , (106)

Rµανβl
αlβ = R̄µανβl

αlβ = −Klµlν , (107)

Rµν l
ν = R̄µν l

ν = (D − 1)Klµ , (108)

R = R̄ = D(D − 1)K , (109)

and the Einstein tensor is calculated as

Gµν = − (D − 1)(D − 2)

2
Kḡµν − ρlµlν , (110)

with

ρ ≡ �̄V + 2ξα∂αV +
[1
2
ξαξ

α + (D+ 1)(D− 2)K
]
V, (111)

where �̄ ≡ ∇̄µ∇̄µ and ∇̄µ is the covariant derivative with

respect to the background metric ḡµν .

To solve the NAT field equations we now let vµ =

ϕ(x) lµ and assume lµ∂µϕ = 0. By these assumptions we

find that Eqs. (6) and (7) are worked out to be

Jµ
ν = c1lν∇µϕ+ c3l

µ∇νϕ+ (c1 + c3)ϕ∇µlν ,

L = 0 . (112)

Then one can compute the field equations (4) and (5) as

Gµν +Λgµν =
[
−c3∇αϕ∇αϕ+ (c1 − c3)ϕ�ϕ− 2c3ϕξ

α∂αϕ+
(
λ− c1 + c3

4
ξαξ

α
)
ϕ2

]
lµlν − (c1 + c3)ϕ

2Rµανβl
αlβ , (113)

[c1(�ϕ+ ξα∂αϕ) + λϕ]lµ + (c1 + c3)ϕRµν l
ν = 0 , (114)

where � ≡ ∇µ∇µ and use has been made of the identity [∇µ,∇ν ]lα = Rµναβl
β . For the KSK metric (99), these

equations become[
− (D − 1)(D − 2)

2
K + Λ

]
ḡµν − (ρ− 2ΛV )lµlν =

{
−c3∇̄αϕ∇̄αϕ+ (c1 − c3)ϕ�̄ϕ− 2c3ϕξ

α∂αϕ

+
[
λ+ (c1 + c3)

(
K − 1

4
ξαξ

α
)]

ϕ2
}
lµlν , (115)

{c1(�̄ϕ+ ξα∂αϕ) + [λ+ (c1 + c3)(D − 1)K]ϕ}lµ = 0 . (116)

From these, we deduce that

Λ =
(D − 1)(D − 2)

2
K , (117)

�̄V + 2ξα∂αV +
[1
2
ξαξ

α + 2(D − 2)K
]
V = c3

[
∇̄αϕ∇̄αϕ− λ

c1
ϕ2

]
+ (c1 + c3)ϕξ

α∂αϕ
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+
c1 + c3

c1

{
[c1(D − 2)− c3(D − 1)]K +

c1
4
ξαξ

α
}
ϕ2 , (118)

c1(�̄ϕ+ ξα∂αϕ) + [λ+ (c1 + c3)(D − 1)K]ϕ = 0 , (119)

where we eliminated the ϕ�̄ϕ term that appears in Eq. (115) by using the aether equation Eq. (119) and assuming
c1 ̸= 0.

Now let us make the ansatz
V (x) = V0(x) + αϕ(x)2 , (120)

for some arbitrary constant α. With this, we can write Eq. (118) as

�̄V0 + 2ξα∂αV0 +
[1
2
ξαξ

α + 2(D − 2)K
]
V0 = (c3 − 2α)

{
∇̄αϕ∇̄αϕ− 1

c1
[λ+ (c1 + c3)(D − 1)K]ϕ2

}
+(c1 + c3 − 2α)

{
ϕξα∂αϕ+

[
(D − 2)K +

1

4
ξαξ

α
]
ϕ2

}
. (121)

Here there are two possible choices for α. The first one is α = c3/2 for which Eq. (121) becomes

�̄V0 + 2ξα∂αV0 +
[1
2
ξαξ

α + 2(D − 2)K
]
V0 = c1

{
ϕξα∂αϕ+

[
(D − 2)K +

1

4
ξαξ

α
]
ϕ2

}
, (122)

and reduces to
�̄V0 = 0 , (123)

when K = 0 and ξµ = 0, which is the pp-wave case to be discussed in Sec. 8. The other choice, α = (c1 + c3)/2, drops
the second term in Eq. (121) and produces

�̄V0 + 2ξα∂αV0 +
[1
2
ξαξ

α + 2(D − 2)K
]
V0 = −c1∇̄αϕ∇̄αϕ+

[
λ+ (c1 + c3)(D − 1)K

]
ϕ2 . (124)

Here it should be stressed that this last case is present

only when the background metric is nonflat (i.e. K ̸= 0)

and/or ξµ ̸= 0.

On the other hand, the aether equation (119) can be

written as

(�̄+ ξα∂α)ϕ−m2ϕ = 0 , (125)

where, assuming λ is constant, we defined

m2 ≡ − 1

c1
[λ+ (c1 + c3)(D − 1)K] , (126)

since c1 ̸= 0. The equation (125) can be considered as

the equation of the spin-0 aether field ϕ with m being the

“mass” of the field. The definition (126) requires that

1

c1
[λ+ (c1 + c3)(D − 1)K] ≤ 0 , (127)

the same constraint as in Eq. (186) when K = 0. Obvi-

ously, the field ϕ becomes “massless” if

λ = −(c1 + c3)(D − 1)K . (128)

Thus we have shown that, for any solution ϕ of Eq. (125),

there corresponds a solution V0 of Eq. (122) for α = c3/2

or of Eq. (124) for α = (c1 + c3)/2, and we can construct

an exact wave solution with nonflat background given by

Eq. (99) with the profile function Eq. (120) in NAT.

7 AdS-Plane Waves in Null Aether Theory

In this section, we shall specifically consider AdS-plane

waves for which the background metric ḡµν is the usual D-

dimensional AdS spacetime with the curvature constant

K ≡ − 1

ℓ2
= − 2|Λ|

(D − 1)(D − 2)
, (129)

where ℓ is the radius of curvature of the spacetime. We

shall represent the spacetime by the conformally flat co-

ordinates for simplicity; i.e. xµ = (u, v, xi, z) with i =

1, . . . , D − 3 and

ds̄2 = ḡµν dx
µdxν =

ℓ2

z2
(2dudv+ dxidx

i+ dz2) , (130)

where u and v are the double null coordinates. In these

coordinates, the boundary of the AdS spacetime lies at

z = 0.

Now if we take the null vector in the full spacetime

of the Kerr-Schild form Eq. (99) as lµ = δuµ, then using

Eq. (104) along with lµl
µ = 0,

lµ = gµν lν = ḡµν lν =
z2

ℓ2
δµv ⇒ lα∂αV =

z2

ℓ2
∂V

∂v
= 0 ,

lα∂αϕ =
z2

ℓ2
∂ϕ

∂v
= 0 , (131)

so the functions V and ϕ are independent of the coordinate

v; that is, V = V (u, xi, z) and ϕ = ϕ(u, xi, z). Therefore

the full spacetime metric defined by Eq. (99) will be

ds2 = [ḡµν + 2V (u, xi, z)lµlν ]dx
µdxν

= ds̄2 + 2V (u, xi, z)du2 , (132)

with the background metric (130). It is now straightfor-

ward to show that (see also Ref. [34])

∇µlν = ∇̄µlν =
1

z
(lµδ

z
ν + lνδ

z
µ) , (133)

where we used the second property in Eq. (105) to con-

vert the full covariant derivative ∇µ to the background

one ∇̄µ, and lµ = δuµ with ∂µlν = 0. Comparing Eq. (133)
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with the defining relation in Eq. (100), we see that

ξµ =
2

z
δzµ,

ξµ = gµνξν = ḡµνξν =
2z

ℓ2
δµz ,

 ⇒ ξµξ
µ =

4

ℓ2
, (134)

where we again used Eq. (104) together with lµξ
µ = 0.

Thus, for the AdS-plane wave ansatz Eq. (132) with

the profile function

V (u, xi, z) = V0(u, x
i, z) + αϕ(u, xi, z)2 , (135)

to be an exact solution of NAT, the equations that must

be solved are the aether equation (125), which takes the

form

z2∂̂2ϕ+ (4−D)z ∂zϕ−m2ℓ2ϕ = 0 , (136)

where ∂̂2 ≡ ∂i∂
i + ∂2

z and

m2 ≡ − 1

c1

[
λ− (c1 + c3)

D − 1

ℓ2

]
, (137)

and the equation (122) for α = c3/2, which becomes

z2∂̂2V0 + (6−D)z ∂zV0 + 2(3−D)V0

= c1[2zϕ∂zϕ+ (3−D)ϕ2] , (138)

or the equation (124) for α = (c1 + c3)/2, which becomes

z2∂̂2V0 + (6−D)z ∂zV0 + 2(3−D)V0

= −c1[z
2(∂̂ϕ)2 +m2ℓ2ϕ2] , (139)

where (∂̂ϕ)2 ≡ ∂iϕ∂
iϕ+ (∂zϕ)

2.

7.1 AdS-Plane Waves in Three Dimensions

It is remarkable that the equations (136), (138), and

(139) can be solved exactly in D = 3. In that case

xµ = (u, v, z), and so, V0 = V0(u, z) and ϕ = ϕ(u, z).

Then Eq. (136) becomes

z2∂2
zϕ+ z∂zϕ−m2ℓ2ϕ = 0 , (140)

with

m2 ≡ − 1

c1

[
λ− 2(c1 + c3)

ℓ2

]
, (141)

and has the general solution, when m ̸= 0,

ϕ(u, z) = a1(u)z
mℓ + a2(u)z

−mℓ , (142)

where a1(u) and a2(u) are arbitrary functions. With this

solution, Eqs. (138) and (139) can be written compactly

as

z2∂2
zV0 + 3z∂zV0 = E1(u)z

2mℓ + E2(u)z
−2mℓ , (143)

where

E1(u) ≡ 2c1mℓa1(u)
2,

E2(u) ≡ −2c1mℓa2(u)
2,

}
for α =

c3
2
, (144)

E1(u) ≡ −2c1m
2ℓ2 a1(u)

2,

E2(u) ≡ −2c1m
2ℓ2 a2(u)

2,

}
for α =

c1 + c3
2

. (145)

The general solution of Eq. (143) is

V0(u, z) = b1(u) + b2(u)z
−2 +

1

4mℓ

[ E1(u)

mℓ+ 1
z2mℓ

+
E2(u)

mℓ− 1
z−2mℓ

]
, (146)

with the arbitrary functions b1(u) and b2(u). Note that
the second term b2(u)z

−2 can always be absorbed into
the AdS part of the metric (132) by a redefinition of the
null coordinate v, which means that one can always set
b2(u) = 0 here and in the following solutions without loos-
ing any generality. In obtaining Eq. (146), we assumed
that mℓ± 1 ̸= 0. If, on the other hand, mℓ+ 1 = 0, then
the above solution becomes

V0(u, z) = b1(u) + b2(u)z
−2 − E1(u)

2
z−2 ln z

+
E2(u)

8
z2 , (147)

and if mℓ− 1 = 0, it becomes

V0(u, z) = b1(u) + b2(u)z
−2 +

E1(u)

8
z2

− E2(u)

2
z−2 ln z . (148)

At this point, a physical discussion must be made about
the forms of the solutions Eq. (142) and Eq. (146): As we
pointed out earlier, the point z = 0 represents the bound-
ary of the background AdS spacetime; so, in order to have
an asymptotically AdS behavior as we approach z = 0, we
should have (the Breitenlohner-Freedman bound[39])

−1 < mℓ < 1 . (149)

Since ℓ2 = 1/|Λ| in three dimensions, this restricts the
mass to the range

0 < m <
√
|Λ| , (150)

which, in terms of λ through Eq. (141), becomes

(c1 + 2c3)|Λ| < λ < 2(c1 + c3)|Λ| , if c1 > 0 , (151)

2(c1 + c3)|Λ| < λ < (c1 + 2c3)|Λ| , if c1 < 0 . (152)

Thus we have shown that the metric

ds2 = gµν dx
µdxν

=
ℓ2

z2
(2dudv + dz2) + 2V (u, z)du2 , (153)

with the profile function

V (u, z) = V0(u, z) + αϕ(u, z)2 , (154)

describes an exact plane wave solution, propagating in the
three-dimensional AdS background, in NAT.

Up to now, we consider the case m ̸= 0. The case
m = 0, which corresponds to the choice λ = 2(c1 + c3)/ℓ

2

in Eq. (141), needs special handling. The solution of
Eq. (140) when m = 0 is

ϕ(u, z) = a1(u) + a2(u) ln z , (155)

with the arbitrary functions a1(u) and a2(u). Inserting
this into Eqs. (138) and (139) for D = 3 produces

z2∂2
zV0 + 3z∂zV0 = E1(u) + E2(u) ln z , (156)

where

E1(u) ≡ 2c1a1(u)a2(u),

E2(u) ≡ 2c1a2(u)
2,

}
for α =

c3
2
, (157)
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E1(u) ≡ −c1a2(u)
2,

E2(u) ≡ 0,

}
for α =

c1 + c3
2

. (158)

The general solution of Eq. (156) can be obtained as

V0(u, z) = b1(u) + b2(u)z
−2 +

E1(u)

2
ln z

+
E2(u)

4
ln z(ln z − 1) . (159)

7.2 AdS-Plane Waves in D Dimensions:
A Special Solution

Let us now study AdS-Plane Waves in D Dimensions:
A Special SolutionLet us now study the problem in D di-
mensions. Of course, in this case, it is not possible to
find the most general solutions of the coupled differential
equations (136), (138), and (139). However, it is possi-
ble to give a special solution, which may be thought of
as the higher-dimensional generalization of the previous
three-dimensional solution (154).

The D-dimensional spacetime has the coordinates
xµ = (u, v, xi, z) with i = 1, . . . , D − 3. Now assume
that the functions V0 and ϕ are homogeneous along the
transverse coordinates xi; i.e., take

V0 = V0(u, z) , ϕ = ϕ(u, z) ⇒
V (u, z) = V0(u, z) + αϕ(u, z)2 . (160)

In that case, the differential equation (136) becomes

z2∂2
zϕ+ (4−D)z∂zϕ−m2ℓ2ϕ = 0 , (161)

where m is given by Eq. (137), whose general solution is,
for D ̸= 3,

ϕ(u, z) = a1(u)z
r+ + a2(u)z

r− , (162)

where a1(u) and a2(u) are two arbitrary functions and

r± =
1

2
[D − 3±

√
(D − 3)2 + 4m2ℓ2] . (163)

Inserting Eq. (162) into Eqs. (138) and (139) yields

z2∂2
zV0 + (6−D)z∂zV0 + 2(3−D)V0 = E1(u)z

2r+

+ E2(u)z
2r− , (164)

where

E1(u) ≡ c1(2r+ + 3−D) a1(u)
2,

E2(u) ≡ c1(2r− + 3−D) a2(u)
2,

}
for α =

c3
2
, (165)

E1(u) ≡ −c1(r
2
+ +m2ℓ2) a1(u)

2,

E2(u) ≡ −c1(r
2
− +m2ℓ2) a2(u)

2,

}
for α =

c1 + c3
2

.(166)

The general solution of Eq. (164) can be obtained as

V0(u, z) = b1(u)z
D−3 + b2(u)z

−2 +
E1(u)

d+
z2r+

+
E2(u)

d−
z2r− , (167)

where b1(u) and b2(u) are arbitrary functions. This solu-
tion is valid only if

d+ ≡ 4r2+ + 2(5−D)r+ + 2(3−D) ̸= 0 , (168)

d− ≡ 4r2− + 2(5−D)r− + 2(3−D) ̸= 0 . (169)

When d+ = 0, we have

V0(u, z) = b1(u)z
D−3 + b2(u)z

−2 +
E1(u)

4r+ + 5−D
z2r+ ln z

+
E2(u)

d−
z2r− , (170)

and, when d− = 0, we have

V0(u, z) = b1(u)z
D−3 + b2(u)z

−2 +
E1(u)

d+
z2r+

+
E2(u)

4r− + 5−D
z2r− ln z . (171)

For m ̸= 0, all these expressions reduce to the correspond-

ing ones in the previous section when D = 3.

As we discuss in the previous subsection, these solu-

tions should behave like asymptotically AdS as we ap-

proach z = 0. This means that

r− > −1 . (172)

With Eqs. (163) and (129), this condition gives

m <

√
2|Λ|
D − 1

, (173)

where D > 3. For D = 4 and taking the present value

of the cosmological constant, |Λ| < 10−52 m−2 ≈ 10−84

(GeV)2, we obtain the upper bound m < 10−42 GeV for

the mass of the spin-0 aether field ϕ.

Therefore the metric

ds2 = gµν dx
µdxν =

ℓ2

z2
(2dudv + dxidx

i + dz2)

+ 2V (u, z)du2 , (174)

with the profile function

V (u, z) = V0(u, z) + αϕ(u, z)2 , (175)

describes an exact plane wave, propagating in the D-

dimensional AdS background, in NAT.

8 pp-Waves in Null Aether Theory

As a last example of KSK metrics, we shall consider

pp-waves, These are defined to be spacetimes that admit

a covariantly constant null vector field lµ; i.e.,

∇µlν = 0 , lµl
µ = 0 . (176)

These spacetimes are of great importance in general rel-

ativity in that they constitute exact solutions to the full

nonlinear field equations of the theory, which may repre-

sent gravitational, electromagnetic, or some other forms

of matter waves.[47]

In the coordinate system xµ = (u, v, xi) with i =

1, . . . , D − 2 adapted to the null Killing vector lµ = δuµ,

the pp-wave metrics take the Kerr-Schild form[50−51]

ds2 = 2dudv + 2V (u, xi)du2 + dxidx
i , (177)

where u and v are the double null coordinates and V (u, xi)

is the profile function of the wave. For such metrics, the

Ricci tensor and the Ricci scalar become

Rµν = −(∇2
⊥V )lµlν ⇒ R = 0 , (178)
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where ∇2
⊥ ≡ ∂i∂

i. A particular subclass of pp-waves
are plane waves for which the profile function V (u, xi)
is quadratic in the transverse coordinates xi, that is,

V (u, xi) = hij(u)x
ixj , (179)

where the symmetric tensor hij(u) contains the informa-
tion about the polarization and amplitude of the wave. In
this case the Ricci tensor takes the form

Rµν = −2Tr(h)lµlν , (180)

where Tr(h) denotes the trace of the matrix hij(u).
Now we will show that pp-wave spacetimes described

above constitute exact solutions to NAT. As before, we de-
fine the null aether field as vµ = ϕ(x)lµ, but this time we
let the scalar function ϕ(x) and the vector field lµ satisfy
the following conditions

lµl
µ = 0, ∇µlν = 0, lµ∂µV = 0, lµ∂µϕ = 0. (181)

Note that this is a special case of the previous analysis
achieved by taking the background is flat (i.e. K = 0)
and ξµ = 0 there. Then it immediately follows from
Eqs. (112), (113), and (114) that

Jµ
ν = c1lν∇µϕ+ c3l

µ∇νϕ , L = 0 , (182)

and the field equations are

Gµν + Λgµν = −c3

[
∇αϕ∇αϕ− λ

c1
ϕ2

]
lµlν ,

(183)

(c1�ϕ+ λϕ)lµ = 0 , (184)

where we have eliminated the ϕ�ϕ term that should ap-
pear in Eq. (183) by using the aether equation (184) as-
suming c1 ̸= 0. The right-hand side of the equation (183)
is in the form of the energy-momentum tensor of a null
dust, i.e. Tµν = Elµlν with

E ≡ −c3

[
∇αϕ∇αϕ− λ

c1
ϕ2

]
. (185)

The condition E ≥ 0 requires that††

c3 ≤ 0 ,
λ

c1
≤ 0 . (186)

On the other hand, the equation (184) gives Klein-Gordon
equation for the field ϕ(x):

�ϕ−m2ϕ = 0 , (187)

where we defined the “mass” by

m2 ≡ − λ

c1
, (188)

which is consistent with the constraint (186).
With the pp-wave ansatz (177), the field equations

(183) and (184) become

− (∇2
⊥V − 2ΛV ) lµlν + Ληµν = −c3[∂iϕ∂

iϕ

+m2ϕ2]lµlν , (189)

∇2
⊥ϕ−m2ϕ = 0 . (190)

Therefore, the profile function of pp-waves should satisfy

∇2
⊥V = c3[∂iϕ∂

iϕ+m2ϕ2] , (191)

since it must be that Λ = 0. At this point, we can make
the following ansatz

V (u, xi) = V0(u, x
i) + αϕ(u, xi)2 , (192)

where α is an arbitrary constant. Now plugging this into
Eq. (191), we obtain

∇2
⊥V0 = (c3 − 2α)[∂iϕ∂

iϕ+m2ϕ2] , (193)

and since we are free to choose any value for α, we get

∇2
⊥V0 = 0 for α =

c3
2
. (194)

Thus, any solution ϕ(u, xi) of Eq. (190) together with
the solution V0(u, x

i) of the Laplace equation (194) con-
stitutes a pp-wave metric (177) with the profile function
V (u, xi) given by Eq. (192).

Let us now consider the plane wave solutions described
by the profile function (179). In that case, we can inves-
tigate the following two special cases.

The c3 = 0 case
When c3 = 0 (or, α = 0 through Eq. (194)), it is

obvious from Eq. (192) that the function ϕ, satisfying
Eq. (190), detaches from the function V and we should
have V = V0. This means that the profile function satis-
fies the Laplace equation, i.e.,

∇2
⊥V = 0 , (195)

which is solved by V (u, xi) = hij(u)x
ixj only if Tr(h) = 0.

Thus we have shown that plane waves are solutions in
NAT provided the equation (190) is satisfied indepen-
dently. For example, in four dimensions with the coor-
dinates xµ = (u, v, x, y), the metric

ds2 = 2dudv + 2[h11(u)(x
2 − y2) + 2h12(u)xy]du

2

+ dx2 + dy2 (196)

describes a plane wave propagating along the null coordi-
nate v (related to the aether field through vµ = ϕδµv with
ϕ(u, xi) satisfying Eq. (190)) in flat spacetime. Here the

††At this point, it is worth mentioning that, although the Null Aether Theory being discussed here is inherently different from the

Einstein-Aether theory[2−3] with a unit timelike vector field, the constraint c3 ≤ 0 in Eq. (186) is not in conflict with the range given in the

latter theory. Indeed, imposing that the PPN parameters of Einstein-Aether theory are identical to those of general relativity, the stability

against linear perturbations in Minkowski background, vacuum-Čerenkov, and nucleosynthesis constraints require that (see, e.g., Ref. [42])

0 < c+ < 1 , 0 < c− <
c+

3(1− c+)
,

where c+ ≡ c1 + c3 and c− ≡ c1 − c3. Thus, for any fixed value c+ in the range 2/3 < c+ < 1, c3 is restricted to the range

−
c+(3c+ − 2)

6(1− c+)
< c3 <

c+

2
.

So there is always a region where c3 is negative; for example, when c+ = 4/5, we have −4/15 < c3 < 2/5.
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function h12(u) is related to the polarization of the wave

and, for a wave with constant linear polarization, it can

always be set equal to zero by performing a rotation in

the transverse plane coordinates x and y.

The c3 ̸= 0 and V0(u, x
i) = tij(u)x

ixj case

In this case, the Laplace equation (194) says that

Tr(t) = 0, and from Eq. (192) we have

ϕ =

√
2

c3
[hij(u)− tij(u)]xixj . (197)

Inserting this into Eq. (190), we obtain

[hk
k(hij − tij)− (hki − tki)(h

k
j − tkj)]x

ixj

−m2[(hij − tij)x
ixj ]2 = 0 . (198)

This condition is trivially satisfied if hij = tij , but this

is just the previous c3 = 0 case in which V = V0. Non-

trivially, however, the condition Eq. (198) can be satisfied

by setting the coefficient of the first term and the mass m

(or, equivalently, the Lagrange multiplier λ) equal to zero.

Then again plane waves occur in NAT.

9 Conclusions

In this work, we introduced the Null Aether Theory

(NAT), which is a vector-tensor theory of gravity in which

the vector field defining the aether is assumed to be null

at each point of spacetime. This construction allows us to

take the aether field (vµ) to be proportional to one null

leg (lµ) of the viel-bein defined at each point of space-

time, i.e. vµ = ϕ(x)lµ with ϕ(x) being the spin-0 part

of the aether field. We first investigated the Newtonian

limit of this theory and then constructed exact spheri-

cally symmetric black hole solutions in D = 4 and non-

linear wave solutions in D ≥ 3 in the theory. Among

the black hole solutions, we have Vaidya-type nonstation-

ary solutions, which do not need any extra matter fields

for their very existence: the aether behaves in a sense

as a null matter field to produce such solutions. Besides

these, there are also (i) Schwarzschild-(A)dS type solu-

tions with h(r) ≡ 1 − Br2 − 2m/r for c1 = 0 that exist

even when there is no explicit cosmological constant in

the theory, (ii) Reissner-Nordström-(A)dS type solutions

with h(r) ≡ 1−Λr2/3−B/r2− 2m/r for c1 = −(c2+ c3),

(iii) solutions with h(r) ≡ 1 − Λr2/3 − Br − 2m/r for

c1 = −5(c2 + c3)/8, which were also obtained and used to

explain the flatness of the galaxy rotation curves in con-

formal gravity, and so on. All these solutions have at least

one event horizon and describe stationary black holes in

NAT. We also discussed the existence of black hole solu-

tions for arbitrary values of the parameters {c1, c2, c3, c4}.
We studied the cosmological implications of NAT in

FLRW spacetimes. We assumed the null aether is prop-

agating along the x direction and found mainly two dif-

ferent types of solutions. In the first type, the null aether

scalar field ϕ(t) and radius function R(t) are given as tσ

(power law) where σ is expressed in terms of the param-

eters of the theory. The pressure and the matter density

functions blow up when t = 0 (Big-bang singularity). The

second type is the de Sitter universe with exponentially

decaying aether filed. In this case the pressure and the

matter density functions are constants. We showed that

the accelerated expansion of the universe is possible in

NAT if the parameters of the theory satisfy some special

inequalities.

As for the wave solutions, we specifically studied the

Kerr-Schild-Kundt class of metrics in this context and

showed that the full field equations of NAT reduce to just

two, in general coupled, partial differential equations when

the background spacetime takes the maximally symmet-

ric form. One of these equations describes the massive

spin-0 aether field ϕ(x). When the background is AdS, we

solved these equations explicitly and thereby constructed

exact AdS-plane wave solutions of NAT in three dimen-

sions and in higher dimensions than three if the profile

function describing the wave is independent of the trans-

verse D− 3 coordinates. When the background is flat, on

the other hand, the pp-wave spacetimes constitute exact

solutions, for generic values of the coupling constants, to

the theory by reducing the whole set of field equations to

two decoupled differential equations: one Laplace equa-

tion for a scalar function related to the profile function of

the wave and one massive Klein-Gordon equation for the

spin-0 aether field in (D − 2)-dimensional Euclidean flat

space. We also showed that the plane waves, subset of pp-

waves, are solutions to the field equations of NAT provided

that the parameter c3 vanishes. When c3 is nonvanishing,

however, the solution of the Laplace equation should sat-

isfy certain conditions and the spin-0 aether field must be

massless, i.e., λ = 0. The main conclusion of these com-

putations is that the spin-0 part of the aether field has a

mass in general determined by the cosmological constant

and the Lagrange multiplier given in the theory and in

the case of AdS background this mass acquires an upper

bound (the Breitenlohner-Freedman bound) determined

by the value of the background cosmological constant.
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